skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chan, Henry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to their tunable bandgaps and strong spin-valley locking, transition metal dichalcogenides constitute a unique platform for hosting single-photon emitters. Here, we present a versatile approach for creating bright single-photon emitters in WSe2 monolayers by the deposition of gold nanostars. Our molecular dynamics simulations reveal that the formation of the quantum emitters is caused by the highly localized strain fields created by the sharp tips of the gold nanostars. The surface plasmon modes supported by the gold nanostars can change the local electromagnetic fields in the vicinity of the quantum emitters, leading to their enhanced emission intensities. Moreover, by correlating the emission energies and intensities of the quantum emitters, we are able to associate them with two types of strain fields, and derive the existence of a low-lying dark state in their electronic structures. Our findings are highly relevant for the development and understanding of single-photon emitters in transition metal dichalcogenide materials. 
    more » « less
  2. Abstract The optoelectronic properties of semiconducting polymers and device performance rely on a delicate interplay of design and processing conditions. However, screening and optimizing the relationships between these parameters for reliably fabricating organic electronics can be an arduous task requiring significant time and resources. To overcome this challenge, Polybot is developed—a robotic platform within a self‐driving lab that can efficiently produce organic field‐effect transistors (OFETs) from various semiconducting polymers via high‐throughput blade coating deposition. Polybot not only handles the fabrication process but also can conduct characterization tests on the devices and autonomously analyze the data gathered, thus facilitating the rapid acquisition of data on a large scale. This work leverages the capabilities of this platform to investigate the fabrication of OFETs using hydrogen bonding‐containing semiconducting polymers. Through high‐throughput fabrication and characterization, various data trends are analyzed, and large extents of anisotropic charge mobility are observed in devices. The materials are thoroughly characterized to understand the role of processing conditions in solid state and electronic properties of these organic semiconductors. The findings demonstrate the effectiveness of automated fabrication and characterization platforms in uncovering novel structure–property relationships, facilitating refinement of rational chemical design, and processing conditions, ultimately leading to new semiconducting materials. 
    more » « less